
A LOOP-FREE ALGORITHM BASED ON PREDECESSOR INFORMATION

Shree Murthy and J.J. Garcia-Luna-Aceves
University of California
Santa Cruz, CA 95064
shree, jj@cse.ucsc.edu

Abstract

The loop-free predecessor based routing algorithm
(LPRA), is presented. This algorithm eliminates the for-
mation of temporary routing loops without the need for
internodal synchronization spanning multiple hops or the
specification of complete path information. Like other al-
gorithms, LPRA operates by specifying the second-to-last
hop and distance to each destination; in addition, it uses
an interneighbor synchronization mechanism. A detailed
proof of correctness is presented and its complexity is eval-
uated. Its performance is compared by simulation with an
ideal link-state algorithm and a loop-free algorithm (called
DUAL) that is based on internodal coordination spanning
multiple hops; both algorithms are representative of the
state of the art in distributed routing algorithms. The sim-
ulation results show that LPRA is a better alternative than
those two algorithms in terms of the number of steps needed
to converge after a topological change and is comparable to
DUAL in terms of the number of messages and CPU cycles
needed to converge after a topological change.

1 Introduction

Many of the routing protocols used in today’s networks
are based on the distributed Bellman-Ford algorithm (DBF)
for shortest-path computation [2]. However, DBF suf-
fers from the bouncing effect and the counting-to-infinity
problems [11]. Recently, distributed shortest-path algo-
rithms [1, 7, 8, 10, 12] that utilize information regard-
ing the length and second-to-last hop (or predecessor) of
the shortest path to each destination have been proposed
to eliminate the counting-to-infinity problem of DBF. We
call these type of algorithms path-finding algorithms. Al-
though these algorithms provide a marked improvement
over DBF, they do not eliminate the possibility of tempo-
rary loops. The loop-free algorithms reported to date rely
on mechanisms that require routes either to synchronize
along multiple hops [4, 3, 9], or exchange path information
that can include all the nodes in the path from source to
destination [6].
�
This work was supported in part by the Office of Naval Research

under Contract No. N-00014-92-J-1807 and by the Advanced Research
Projects Agency (ARPA) under contract F19628-93-C-0175

In this paper, we present a path-finding algorithm that is
loop-free at every instant. We call this algorithm the loop-
free predecessor-based routing algorithm (LPRA). Accord-
ing to LPRA, update messages are sent only to neighboring
nodes. LPRA eliminates all temporary loops by implement-
ing an interneighbor coordination mechanism with which
potential temporary loops are blocked before routers can
forward data through them. To block a potential temporary
loop, a node sends a query to all its neighbors reporting an
infinite distance to a destination, before changing its rout-
ing table; the node is free to choose a new successor only
when it receives the replies from its neighbors. To reduce
the communication overhead incurred with interneighbor
coordination, nodes use a feasibility condition to limit the
number of times when they have to send queries to their
neighbors. In contrast to many prior loop-free routing algo-
rithms [3, 4, 9], queries propagate only one hop in LPRA.
Furthermore, updates and routing-table entries in LPRA
require a single node identifier as path information, rather
than a variable number of node identifiers as in prior algo-
rithms [6].

Section 2 presents the network model assumed in LPRA.
Section 3 provides a description of the algorithm and an
example illustrating key aspects of its operation. Section 4
provides a detailed proof of LPRA’s correctness. Section 5
addresses the performance of LPRA. Finally, Section 6
presents our conclusions.

2 Network Model

A computer network is modeled as an undirected graph
represented as

�������
	��
, where

�
is the set of nodes and

	
is

the set of links connecting the nodes. Each node represents
a router and is a computing unit involving a processor, local
memory and input and output queues with unlimited capac-
ity. A functional bidirectional link connecting the nodes

and � is represented as
� � � � and is assigned a positive

weight in each direction. The link is assumed to exist in
both the directions at the same time. All the messages re-
ceived (transmitted) by a node are put in the input (output)
queue on a first-come-first-serve basis and are processed in
that order. An underlying protocol assures that: (a) every
node knows who its neighbors are; this implies that a node
within a finite time detects the existence of a new neighbor
or the loss of connectivity with a neighbor. (b) all packets
transmitted over an operational link are received correctly
and in the proper sequence within a finite time; and (c) all

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
2006 2. REPORT TYPE

3. DATES COVERED
 00-00-2006 to 00-00-2006

4. TITLE AND SUBTITLE
A Loop-Free Algorithm Based on Predecessor Information

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California at Santa Cruz,Department of Computer
Engineering,Santa Cruz,CA,95064

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

9

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

update messages, changes in the link-cost, link failures and
link recoveries are processed one at a time in the order in
which they occur.

Each node is represented by a unique identifier. Any link
cost can vary in time but is always positive. The distance
between two nodes in the network is measured as the sum
of the link costs of the shortest path between the nodes.

A node failure is modeled as all the links incident on that
node failing at the same time. A change in the operational
status of a link or a node is assumed to be notified to its
neighboring nodes within a finite time. These services are
assumed to be reliable and are provided by the lower level
protocols.

A path from node

to node � is a sequence of nodes
where

� �
�
1
�
,
�������
�����

1
�
,
������� � � are links in the path. A

simple path from

to � is a sequence of nodes in which
no node is visited more than once. The paths between any
pair of nodes and their corresponding distances change over
time in a dynamic network. At any point in time, node

is connected to node � if a path exists from

to � at that

time. The network is said to be connected if every pair of
operational nodes are connected.

The successor to destination � for any node is simply
referred to as the successor of the node, and the same ref-
erence applies to other information maintained by a node.
Similarly, updates, queries and responses refer to destina-
tion � , unless stated otherwise.

3 LPRA Description

Each node maintains a distance table, a routing table and
a link-cost table. The distance table is a matrix containing
the distance and the predecessor entries for all destinations
through all the neighboring nodes. The routing table is a
column vector containing the minimum distance entries for
each destination and its corresponding predecessor and suc-
cessor (or next hop) information, which can be extracted
from the distance table. The implicit path information from
a node to any destination node can be extracted from the
predecessor entries of the node’s distance and routing ta-
bles. The link-cost table lists the cost of each link adjacent
to the node; the cost of a failed link is considered to be
infinity.

LPRA is specified in pseudocode form in Figure 1. Pro-
cedures Init1 and Init2 are used for initialization. Topology
changes, handling of the feasibility condition (FC), path
traversal in the distance table and updating of the routing ta-
bles are done by procedures linkUp, linkDown, linkChange,
FC, in path and rt update respectively. Procedures Update,
Query and Reply handles the updates, queries and replies
respectively.

An update message consists of the source and the desti-
nation node identifiers, the path information and an update
flag for one or more destinations. The update flag indicates
whether the received message entry is an update (flag=0),
query (flag=1) or a response (flag=2). The time at which
an update message was sent and the number of hops the
message has traversed so far can be recorded as well. The
distance entry in a query is always set to � .

In LPRA, a node can be in one of the two states for each
destination, passive or active. A node is passive if it has

a feasible successor, or has determined that no such node
exists and is active if it is searching for a feasible successor.
A feasible successor for node

with respect to destination� is a neighbor node that satisfies the feasibility condition

(FC). When node

is passive, it reports ���� in all its updates

and replies. However, while the node is active, it sends
an infinite distance in its replies and queries. Feasibility
condition (FC) is defined as follows:

If at time � node

needs to update its current successor,
it can choose as its new successor � �� � � � from any node����

�
� � � such that

is not present in the implicit path

to � reported by neighbor
�

, � ��"!$#&% � !
� � �(' �*) � !

'
+& �-, � �� � #.% �

� � � �0/ 12�3 �
� � �54 and � ��6!2798 � �� � � � . If no

such neighbor exists and � �� ' � , node

must keep its
current successor. If �) � !

' � then � �� � � �:';�=<�>?>
.

The successor graph for destination � �@�
, denoted

by A � ����� , is a directed graph where nodes are the same
nodes of

�
and where directed links are determined by the

successor entries in the nodal routing tables. Loop-freedom
is guaranteed at all times in

�
if A � ����� is always a directed

acyclic graph.
When a node

processes an update from its neighborB

for destination � , the distance and predecessor entries
in the distance table are updated (Step 1). Also, node

determines whether the path to destination � through any
of its other neighbors

,�CD�E
�
/ C�F'&B�4

includes node
B

. If
the path implied by the predecessor information reported
by node

C
to destination � includes node

B
, then the distance

entry of that path is updated as � ��HG ' � �I G # � I� and the
predecessor entry is updated as J ��HG ' J I� (Step 2). Thus,
a node can determine whether or not the update received
from

B
affects its other distance and routing table entries.

When node is in the passive state and detects a cost
change in link

� �
BK�
or receives an update or query from

neighbor
B

, it first updates its link-cost table with the new
value of the link % � I , its distance table with � �� I ' � I� #�% � I
and J �� I ' J � I . After that, it determines whether or not the
node has a feasible successor, i.e, a neighbor node that
satisfies FC.

If a feasible successor is found, node

updates its dis-
tance and predecessor entries of its distance table by travers-
ing through all its other neighbors (Step 2) and then updates
the routing table entries accordingly. Node

sends update

messages to its neighbors if the routing table entries have
changed. Furthermore, node

sets 8 � �� equal to the smaller

of the updated value of � �� and the present value of 8 � �� .
If node

does not find a feasible successor, then 8 � ��

is set to � . In addition, node

keeps its current path
information and updates the distance entry in the distance
table (Steps 1 and 2). If � �� � � �L' � , then � �� � � � =null. Node

also sets the reply status flag (M �� I ' 1) for all
B.�;

�
and sends a query to all its neighbors. Node

is then said

to be active, and cannot change its path information until it
receives all the replies to its query. If the input event was a
query from its neighbor after which

became active, node

responds to its neighbor
B

with the distance of its reply
set to � . A node need not query its neighbor node

B
due

to which node

became active. Instead, a node can send a

reply with infinite distance. If node
B

becomes passive after
receiving node

’s reply and changes its path information,

then this change will be notified to node

by an update
message.

When node

is active and receives a reply from node

B
, it

updates its distance table and resets the reply flag (M �� I ' 0).
Node

becomes passive at time � when MH�� I � � �N' 0

for every
BO�P

� . At that time, node

can be certain
that all its neighbors have processed its query reporting an
infinite distance and node

is therefore free to choose any

neighbor that provides the shortest distance, if there is any;
or node

has found a feasible successor through one of its

neighbors
BQ�R

� . If such a neighbor is found, node

updates the routing table as the minimum in distance-table
row for destination � and also updates 8 � �� ' � �� .

A node need not have to wait indefinitely for replies from
its neighbors because a node replies to all its queries regard-
less of its state. Thus, there is no possibility of deadlocks
due to the interneighbor coordination mechanism.

If node

is passive and has already set � �� ' � and
receives an input that implies an infinite distance to � , then
node

simply updates � �� I and % � I and sends a reply to

node
B

with an infinite distance if the input event is a query
from node

B
. This ensures that updates messages will stop

in
�

when a destination becomes unreachable.
Node

initializes itself in passive state with an infinite

distance for all its known neighbors and with a zero dis-
tance to itself. After its initialization, node

sends updates

containing the distance to itself to all its neighbors.
When node

establishes a link with a neighbor

B
, it

updates its link-costs table and assumes that node
B

has
reported infinite distances to all destinations and has replied
to any query for which node

is active; furthermore, if nodeB

is a previously unknown destination, node

initializes the

path information of node
B

and sends an update to the new
neighbor

B
for each destination for which it has a finite

distance. When node

is passive and detects that link
� �SBK�

has failed, it sets % � I
' � , � �� I ' � and J �� I =NIL; after

that, node

carries out the same steps used for the reception

of a link-cost change message in passive state. When node
is active and loses connectivity with a neighbor

B
, it resets

the reply flag and resets the path information i.e, assumes
that the neighbor

B
sent a reply reporting an infinite distance.

The addition or failure of a node is handled by its neigh-
bors as all the links connecting to that node coming up or
going down at the same time.

In contrast to LPRA, which makes a node

check the
consistency of predecessor information reported by all its
neighboring nodes each time an update is processed, Hum-
blet’s and other earlier path finding algorithms [1, 10, 8]
check the consistency of the predecessor information only
for the neighbor associated with the input event. In
LDR [5], the path information is sent to the neighbors by
an explicit label. Unlike that, in LPRA, path information is
extracted by the predecessor information; Therefore, fixed
size update entries can be used, rather than variable size
entries that can contain the complete path in some cases.

As an exampleof LPRA’s operation and its loop-freedom
property, consider the five-node network depicted in Fig-
ure 2. In this network, links and nodes have the same
processing or propagation delays; T represents the queries,

10

31

1

1

3

j(0,0,j) d(4,4,a)

(1,1,a)

b(2,2,a)c(3,3,a)

100

Q

Q Q

Q

(4,4,a)

(3,3,a) (2,2,a)

(inf,100,

(0,0,j)

R(10,d)R(0,j)

Q

Q

(4,10,d)

Step 3 Step 4

Step 1

a

U(13,d)U(13,d)

(0,0,j) (4,10,d)

(13,13,d)

R(inf, φ)

R(inf, φ) U(14,d)

(14,14,d)

(0,0,j) (4,10,d)

U(14,d)

(13,13,d) a(13,13,d)

c(15,15,d) b(14,14,d)

d(4,10,d)j(0,0,j)

Step 5

c(inf,3,a) b(inf,2,a)

b(inf,2,a)c(inf,3,a)

c b

d

a

d

j d

b

aa

j

c

d

j

a (inf, 100,a)

j(0,0,1)

 a)

U(13,d) U(13,d)

R(inf,R(inf, φ) φ)

(16,16,d)
U(16,d)

U(16,d)

U(15,d)

U(15,d)

U(10,d)
Step 2

Figure 2: Example of the Algorithm’s Operation

U
replies and V indicates updates. The working of the algo-

rithm is explained when the cost of the link
��W�� � � changes.

The arrowhead from node
1

to node X indicates that nodeX is the successor of node
1

towards destination � (i.e,�
�� ' X). The label in parenthesis assigned to node

1
in-

dicates the feasible distance from
1

to � (8 �
��), current

distance (�
��), and predecessor of the path from

1
to � (J

��).
Steps 1 through 5 of Figure 2 depicts the behavior of LPRA.
Update and reply messages are followed by the value of M %

��
and M
J

�� in parentheses. Nodes in the active state are indi-
cated with a circle around them. 8 � �� is always decreasing
as long as node

is in the active state.

When node
W

detects the change in the cost of the link��W�� � � , it determines that it does not have a feasible successor
as none of its neighbors have a distance smaller than 8 �ZY�
= 1. Accordingly, node

W
becomes active by setting the

reply status flag M Y� � for all its neighbors for destination �
and sends a query to all its neighbors (Step 1).

Nodes
C

and [also recognize that they do not have a
feasible successor. This is achieved in a single step as the
node traces through all its neighbors on receipt of an input
event (Step 2 of the pseudocode). Node

C
([) becomes

active and sends query to [(
C
) and reply to

W
. On the other

hand, node % is able to find a path to � and replies with the
cost of the alternate path to � to node

W
’s query and updates

its distance to � maintaining the same feasible distance.
When node

W
receives replies from all its neighbors, it

becomes passive again, and replies to the queries of nodes
C

and [with its feasible distance. Having found their feasible
successor, nodes

C
and [update their path information ac-

cordingly. All nodes exchange update messages informing
the new path information with their neighbors (Step 4) and
the final stable topology is shown in Step 5.

4 Correctness of LPRA

Time \ is defined such that links and nodes can go up
and down and the cost of links can change within time
interval [0, \). At time \ , the nodes adjacent to each link
have updated their link cost and status information, and
there are no more changes after time \ . An upstream node

Procedure Init1
when node] initializes itself do begin

set a link-state table with the current costs of the links
set ^�_`] ; ^] _`a?b0c d] bfehgji ;
for all (b:k�^]) do begin

call Procedure Init2(b);
for all (lmkn^) do begin

set o]lqp _ g ; r]lqp _`s6tSuvu ;
set w]lxp _ 0

end
end
set y]] _`]{z?r]] _`]|zqo]] _f}~o]] _ 0;

for each (s:k�^])
do add update �m�{]v� to end of �����6�] �|sS� ;
call Procedure Send

end
Procedure Init2
begin

set ^�_f^���b ;

set r]l _`]|zqy]l _`s"tSuvu ;
set o]b _f}~o]b _ g

end
Procedure Link Down(]{z?p)
(5) when link (]{zqp) fails do begin

delete column for neighbor p in o] ;d] p _ g ; w]lxp _ 0;

if (o]l��_ g)

then go to Step (3);
end
Procedure Link Up(]{z?p
zqd]vp)
(6) when link (]{zqp) comes up do begin

insert column p in o] ; update link-cost table;
set w]lqp _ 0;

Execute Procedure Update(p)
Send the entire routing table to p ;

end
Procedure Link Change(]|z�p)
(7) when d]vp changes value do begin

update link-cost table; update distance table;
execute Procedure Update(p)

end
Procedure Send
begin

for each (s�k�^]) do begin
if (�����6�] �|sS� is not empty)
then send message �]?� �����"�] �{sS��� to s
Empty �����"�] �|sS�

end
end
Procedure Message
when node] receives a message begin

for each entry in the message
do begin

Check the type of the message
0: [Entry is an update message]

Call Procedure Update(p)
1: [Entry is an query]

Call Procedure Query(p)
2: [Entry is an reply]

Call Procedure Reply(p)
end

end

Procedure In Path(]{z?p
z?lxz?�)
begin

set �n��r]lxz � ;
if (� =])
then return(false)
else begin

if (� = p)
then return(true)
else In Path(]{z?p
zq�"zq�);

end
end

Procedure FC
(10) begin

compute � 1 _�a�s0c s:k�^] z�o]l�s e }�o]l i ;
compute o��]|s _f��]{s"aqo]l?b�� d] b c b:k�^]?i ;
compute � 2 _�a�s0c s:k�� 1 zqo]l�s�� d]{s _jo��]{s�i ;
if �{� 2 _f�
�
then return (false);
else return (true);

end

Procedure RT Update
begin

initialize all destinations to be unmarked
for any unmarked destination l do begin

if there is no finite distance in row l
then mark l as undetermined
else begin�m���$� ;

for each node having minimum distance from] to l
if (p = successor)
then maintain the same path and successor
else begin� ��r]lx� z �K���¡�m�¢� � ;

repeat

� �$r]� � z �K�����K�¢� � ;
until o]� � is not minimum of row

�
or r]� � _`] or r]� �

is marked
if ((r]� � is marked as undetermined) or

(o]� � is not minimum of row

�
))

then mark each node in �K� as undetermined;
else begin

mark each node in �K� as determinedo]l �£o]lx� ; r]l �$r]lq� ; y]l �£� ;
end

end
end

end
end
copy the routing vector to �] if the distance or the
predecessor has changed

end

Procdure Reply(p)
(9) begin

set o]lqp _`wqd pl�� d p
] ; r]lqp _�wqr]p ;

set w]lqp _ 0;

if (w]lqp _ 0 z?¤6s�k�^])
then begin

if (FC is satisfied)
then begin

if �{� o]l �_ g �H¥:�vo]lqp �_ g �|�
then begin

set }~o]l _fo¦�]{s
Call Procedure RT Update;
Add Updates to �����"�] � bS� zx¤§b:k�^] ;

end
end
else begin

set o]l _ g ; r]l = null;

end
end
else begin

if �vp=_fy]l �
then begin

set o]l _`wqd pl�� d] p ; r]l _`wqr pl ;

end
end

end

Procedure Update(p)

when vector � p
zv] is received on link (]|zqp)
do begin

(0) begin¨ �K©~�¢ª] ��� ; oK�~©��jª]|z � �Z��¤ neighbors �
end
(1) for each triplet � lxzqo pl z�r pl � in � p5zv] z?l �_`]
do begino]lqp �$o pl�� d] p ; r]lqp �$r pl ;

(2) for all neighbors �
if k is in the path from i to j in the distance
table through neighbor �o]lq� �£o]p�� � o pl ; r]lq� �$r pl

end
(3) if (w]l«b _ 0 z?¤�b�k�^])
then if (FC is satisfied) begin

if �|� o]l �_ g �H¥:� o]lqp �_ g �{�
then begin

set }~o]l _fo��]|s ;

Call Procedure RT Update
Add updates to �����6�] �|sS� z?¤"s�k�^]

end
end
else begin}~o]l _ g ; w]lqp _ 1 z?¤Sp-k�^] ;

if �vp=_`s6tSuvuv�o]l _ g ; r]l = null;

else o]l _fo pl�� d] p ; r]l _fr pl ;

Add queries to �����"�] � p�� , ¤Spnk�^] ;
end
(4) else begin

if (p is the successor)
then begin

set o]l _fo pl � d] p ;

set r]l _fr pl ;

end
end

end
Procedure Query(p)
(8) begin

set o]lqp _fwqd pl�� d]vp ; r]lqp _`wqr pl ;

if � lK_`]v�
then add reply with o]] to �����"�] � p§�
else begin

if (w]l?b _ 0 z?¤§b�k:^])
then if ((o]l _ g) ¬ (o]lqp _ g))

then add reply with o]l to �����6�] �vp§� ;
else begin

if (FC is satisfied)

then add reply with o]l to �����6�] �vp§�)
else begin

set o]l _fo]l�y]l � d]|y]l ; r]l _fr]l�y]l ;

for each s-k�^]� p do begin
set w]l�s _ 1; }~o]l _ g ;

Add query to �����6�] �|sS�
end
set w]lqp _ 0;

Add reply with g to �����"�] � p��
end

end
end
else begin

if (p=_`y]l)

then begin

set o]l _`wqd pl=� d] p ; r]l _`wqr pl ;

end
Add reply with g to �����"�] � p�� ;

end
end

end

Figure 1: LPRA Specification

with respect to node

is a node which is in the path from
source

to destination � .

Proposition 1 If a loop is formed in the successor graphA � �®��� for the first time at time � , then some node
 �3¯ � � � �

must choose an upstream node as its successor at time � .
By definition, the successor graph A � �®�*� is a directed

acyclic graph before the loop is formed at time � . If a loop
has to be formed at time � , there must be at least one nodeBZ� A � ����� that changes its successor because the successor
information can be changed only when an update occurs or
when the node detects a change in a link cost or status. This
implies that an upstream node will be chosen by some node12�°¯ � � � � . ±
Lemma 1 LPRA is free of deadlocks.

Proof: A node

can be in one of the two states — active or
passive at any given time. A node receives updates, queries
or replies at any given time.

When the node is in the active state, if a query is received
from a neighbor, the node replies to these queries with an
infinite distance since the node is still in the process of
computing its path information at that time (active state).
The node updates its distance table entries when either an
update or reply message is received in active state.

When the node in passive state receives a message from
its neighbor, it computes the feasible distance and updates
its distance and routing tables accordingly and replies to the
neighbors’ queries with its feasible distance to the destina-
tion. If a feasible distance is not found, the node forwards
the query to is neighbors and sends a reply with an infinite
distance entry to the originator of the query.

Since a node always replies to the neighbor’s queries,
deadlock cannot occur. ±
Lemma 2 The change in the cost or status of a link will
be reflected in the distance and the routing tables of a node
adjacent to the link within a finite time after time \ .

Proof: The change in the link cost can be due to the link
coming up, the link going down, or the link changing the
link cost.

When a link comes up, a new column entry is added
to the distance table and the new link-cost is assigned to
the corresponding entry in the distance table (Step (6)).
Procedure RT Update is called, which eventually updates
the routing table entry.

When a link goes down, the column entry is deleted and
the distance entries in the distance table will be set to �
(Step (5)). Procedure RT Update again updates the routing
table entries accordingly.

When the link cost changes, the distance entry in the
distance table is updated to reflect the new link cost (Step
(1) and Step (2)). These changes are updated in the routing
table again by Procedure RT Update.

By assumption, any changes that occur in the time inter-
val ² 0 � \ � are updated by time \ ; this implies that the link
cost changes are reflected in the distance and routing tables
of a neighbor node within a finite time \ . ±
Lemma 3 Within a given finite time interval ² 0 � � � , the
number of shortest distance values to a given destination in
a routing table is finite.

Proof: There is a finite number of links in the graph with
a finite number of link cost changes within a given time
interval ² 0 � � � . Therefore, the cardinality of the set is finite.
Also, the number of destinations in the graph are finite.
This implies, there are finite number of entries stored in the
routing table of each node.

The value of the shortest distance from any node in
�

to a given destination at time �S³ is equal to the cost of the
link or the sum of the distance from the successor node to
the destination and the link cost to the successor node or
infinity if a node does not have a successor. This implies
that there are finite number of values from a node to its
destination in the time interval ² 0 � � � . ±
Theorem 1 A finite time after time \ , the routing table
structures at all nodes form the final shortest path.

Proof: The proof consists of showing that the old distance
and predecessor information present in any one node’s rout-
ing and distance tables are updated, and that the shortest-
path trees are eventually computed.

A change in the cost of a link results in a routing table
update by the nodes associated with that link (procedure
RT Update) as required. When a node has to select a new
path, all the minimum distance entries in the distance table
are found. These minimum distance entries can be ob-
tained by finding the minimum of the distance table entries
for a given destination. Also, the loop freedom of the im-
plicit path can be ensured by the predecessor information
present in the node’s routing and distance tables (procedure
in path). This implies that ´ , the number of hops in the
path is finite. If the current successor is the same as the suc-
cessor for any of these minimum distance entries, then the
current path information is retained. The resulting path is
the shortest path in the final graph; otherwise, the new path
information is computed and the routing table is updated
accordingly.

It follows from the design of LPRA that, if node

does
not have a path to node � , the distance in the routing table
is set to � . Because the number of hops ´ is finite, andµ � � % � , the maximum number of links in the path from

whose distance to any node is less than or equal to % in the
final topology is finite, all paths have a final shortest path.

Let the initial time be \ � 0 �L' \ . Let \ � ´ � be the time at
which all messages that are in transit at time \ � ´.¶ 1

�"� ´¸·
0, have arrived at their destination and have been processed.
The rest of proof is done by induction on ´ . At time´ '

0, because there are no messages to be transmitted,
the theorem holds true. Assume that the theorem is true for
some ´ ' +º¹

0.
A path of

+ # 1 links is the concatenation of an adjacent
link and a path with

+
links. From the definition of \ � ´ � ,

by time \ � + # 1
�
, the routing trees computed at time\ � + �

have all been communicated to the neighbors of the
nodes which computed such trees. By Lemma 2, these link
cost changes are updated in the node’s distance and routing
tables. This proves the theorem. ±
Lemma 4 No node in the network

�
can be active after a

finite time � for any destination.

Proof: Consider a network
�

with a stable topology. We
need to consider three cases: a node receives a query from

its neighbor, a node receives an update message from its
neighbor, and a node observes a link-cost change.

When a node receives a query from its neighbor, re-
gardless of the state of the node, the node responds to the
query immediately either by a feasible distance (if it is in
passive state) or by sending an infinite distance (if it is in
active state). Therefore, the node cannot remain active for
an infinite time when it receives a query from a neighbor.

When an update is received by a node

, and if

has a

feasible successor, it remains in the passive state, updates
its distance table entries within a finite time (step 1 in the
algorithm) and proceeds accordingly. If the node is unable
to find a feasible successor, it becomes active by sending
queries to its neighbors. Since a node responds to all the
queries within a finite time, the update process will also be
done in a finite time.

When node

observes a link-cost change, the distance
table at

is updated and the routing table is updated as

defined by the feasibility condition. The updated entries at

are sent to neighbors

� as updated messages. Since update

messages are processed in finite time, link-cost changes are
also processed in finite time. A node failure is treated as all
the links incident on the failed node going down at the same
time and the link cost changes can be treated as a link going
down and coming up with a new link cost. Therefore, this
will also be processed within a finite time.

Therefore, a node in
�

can be active only for a finite
time for any destination � . ±
Lemma 5 If at time � all nodes in the graph

�
are reachable

from one another then, a finite time after � , no new update
messages are being transmitted or processed by any node,
and the entries corresponding to each destination � in all
the distance and routing tables are correct.

Proof: Given that the graph
�

is finite, there is a finite
number of entries in a node’s distance and routing tables.
From Lemma 4, we also have that a node cannot be active
for an indefinitely long period of time. Assume that at time� , all nodes in

�
are reachable.

After time � , let node

receive an update message due to
the change in the link-cost. This results in sending update
messages to all the neighbors

B»�&
� . From Lemma 4,

the update message will be processed in finite time after
receiving it. Also, from Theorem 1, we have correct entries
in the node’s distance and routing tables when the algorithm
converges. This proves Lemma 5. ±
Lemma 6 Assume that at time � at least one node � �3� is
inaccessible to a connected subset of nodes ¯¼ �*½ . Then,
no node

 � ¯¼ � can terminate for node � with � ���7 � .

Proof: This lemma is proved by contradiction.
Assume that node

 � ¯¼ � does terminate LPRA with
a finite distance at time �S¾ ¹ � ; this implies that � �� is
constant and � �� is constant and finite since time �S¾ . Let
� �� � �S¾ ��'¿B

; then because all link costs are constant after
time � , ���� � � ¾ �:' � I� � � ¾ � #À% � I

� � � . It is obvious that, if any
node

 � ¯¼ � terminates at time �S¾ , its successor � �� � �S¾ � must
terminate before that time. Following the same argument,
and traversing the path

to � , it must be true that each node1

in such a path must have a constant distance �
�� � �S¾ � .

Thus, because
/ ¯¼ � / and � �� � �S¾ � are finite and LPRA is free

of deadlocks and loops [12], a node
�

must be reached for
which � !� � �S¾ ��'Á> !� � � � and � !� � �S¾ ��' � ; this is impossible
because � is not adjacent to any node in ¯¼ � at time ��Â»�S¾
and every node knows its neighbors. Therefore, the lemma
is true. ±
Lemma 7 If there is at least one node � �Ã� that is inac-
cessible to a subset of nodes in

�
at time � then, a finite

time after � , no new update messages with an entry for node� will be transmitted or processed by nodes, and the entries
corresponding to node � in all topology and routing tables
are correct.

Proof: By contradiction.
After time � , � must consist of one or more connected

components and a set of zero or more isolated nodes. Be-
cause an isolated node sets all its routing-table entries to
infinity after detecting that it has no neighbors, the proof
needs to consider only connected components.

Assume that, after time � , node � is unreachable from a
set of nodes that constitutes a connected component of the
graph ¯¼ � . The proof needs to show that every node

12� ¯¼ �
sets �

�� ' � a finite time after time � and, therefore, cannot
change that entry to a finite value until a new topological
change occurs.

If node
�9� ¯¼ � , LPRA can not terminate with a finite

distance (Lemma 6). If ¯¼ � is connected, it follows from
the way in which distances and successors are updated that
either all the nodes in ¯¼ � terminate with an infinite distance,
or each of them keeps sending updates reporting changes
in its distance or update label indefinitely.

Assume that the nodes in ¯¼ � do not terminate, and con-
sider the case in which node

 � ¯¼ � never sets � �� ' �
after a finite time � � ·Ä� . If this is the case, given that every
node in ¯¼ � has a finite number of neighbors and that no
topology changes occur after time � , node

must choose

at least one neighbor node that satisfies FC, say node � , as
its successor an infinite number of times after time � � . If
this is true for node

, the same must apply for node � and

for all the nodes in at least one path from node

to node � .
However, every node knows its neighbors, which implies
that after a finite time �§Å3·O� all paths in ¯¼ � must lead to
nodes who have set their distances equal to � . Therefore,
every node in ¯¼ � must send queries (reporting an infinite
distance) an infinite number of successions after a finite
time greater than or equal to time � . From the assumption,
no node in ¯¼ � terminates, and each node has a finite num-
ber of neighbors, it follows that node

must choose some

neighbor node, say � , that satisfies FC as its successor and
report the path information to all its neighbors

1Æ�3
� after

receiving all the replies to its queries. This must occur an
infinite number of times which, however, is impossible.

Node
 � ¯¼ � has a path to the destination � only if

has

� �� 7 � . This is not possible after a finite time larger than
or equal to time � , as all the nodes know their neighbors and
it is assumed that there are no topological changes after time� . Accordingly, after a finite time �§Å2·»� , whenever node

updates its routing table with a finite distance value, it must
update its path information also. Therefore, for node

to be

able to set � �� 7 � an infinite number of successions after

time � , there must exist an infinite number of paths (even if
they are incomplete) from node

to node � in A � � ¯¼ � � after

time � , which is impossible because ¯¼ � has a finite size.
From the above, it follows that every node

1Ç� ¯¼ � sets�
�� ' � a finite time after time � , and the lemma is true.±

Theorem 2 A finite time after � , no new update messages
are being transmitted or processed by nodes in

�
, and all

entries in distance and routing tables are correct.

Proof: By contradiction.
Assume that the transmission of update messages report-

ing topological changes never ceases or terminates with in-
correct values in the routing tables. This implies that there
must be at least one row (call it �) of the routing tables
for which either an infinite number of update messages are
generated or incorrect information is obtained. After time� , either all nodes are mutually reachable or at least one is
inaccessible from a subset of nodes in the graph. As Lem-
mas 5 and 7 are true for any destination � , the theorem is
true. ±

5 Performance of LPRA

The overhead required to converge to correct routing
table entries in the worst case are computed assuming that
the algorithm behaves synchronously so that every node in
the network executes a step of the algorithm simultaneously
at fixed points in time. At each step, the node receives and
processes all the inputs originated during the preceding step
and if required, sends update messages to the neighboring
nodes at the same step. The first step occurs when at least
one node detects a topological change and issues update
messages to its neighbors. During the last step, at least one
node receives and processes messages from its neighbors
and after which the node stops transmitting any update
messages till a new topological change has taken place.
The number of steps taken for this process is termed as time
complexity (TC) and the number of messages required to
accomplish this is the communication complexity (CC).

DBF has a worst-case time complexity of È �5/ Ã/ � and
worst-case communication complexity of È �5/ 2 / � , where,

is the number of nodes in the network
�

. In contrast,
LPRA can be shown to have TC=O(

1
) and CC=O(

1
) [12]

where,
1

is the number of nodes affected by a single topol-
ogy change.

To obtain an insight into the average performance of
LPRA, the algorithm was analyzed by simulation using
the topologies of typical networks. Simulations were per-
formed using Drama [13] along with a network simulation
library. The performance was compared with a diffusing
update algorithm DUAL [4] and an ideal link-state algo-
rithm (ILS). The simulation uses link weights of equal cost,
and zero link transmission delays. During each simulation
step, a node processes input events received during the pre-
vious step one at a time, and generates messages as needed
for each input event it processes. To obtain the average fig-
ures, the simulation makes each link (node) in the network
fail, and counts the steps and messages needed for each
algorithm to recover. It then makes the same link (node)

Table 1: Simulation Results for Los-Nettos

Para- LPRA DUAL ILS
meter mean sdev mean sdev mean sdev

Link Failure

EC 88.6 43.3 49.9 18.6 29.0 5.8
PC 33.7 16.6 32.6 11.8 27.0 5.8

DUR 5.4 1.7 6.7 1.3 4.2 0.88
OC 77.6 25.6 69.9 18.6 724.1 27.3

Link Recovery

EC 83.7 7.0 45.7 7.4 33.3 1.9
PC 15.1 3.8 17.0 7.2 31.9 1.9

DUR 2.8 0.6 3.7 0.9 3.86 0.5
OC 97.1 18.8 65.7 7.5 944.0 45.8

Node Failure

EC 123.8 22.96 67.6 19.7 31.8 9.6
PC 47.3 8.9 45.7 3.3 26.7 7.19

DUR 5.9 1.1 7.0 1.0 4.09 0.51
OC 115.8 27.35 113.6 40.1 702.9 204.3

Node Recovery

EC 175.4 98.3 86.7 34.3 56.2 13.4
PC 26.9 10.4 39.0 11.2 51.1 10.8

DUR 3.6 0.83 4.7 0.5 4.4 0.5
OC 213.1 99.2 132.7 56.13 1698.8 478.4

recover and repeat the process. The average is then taken
over all link (node) failures and recoveries. The results of
this simulation for Los-Nettos are shown in Table 1. The
table shows the total number of events (updates and link-
status changes processed by nodes) (EC), the total number
of update messages transmitted (PC), the total number of
steps needed for the algorithms to converge (DUR), and the
total number of operations performed by all the nodes in
the network (OC).

The details of simulation analysis appear in [12]. How-
ever, it is worth noting that, as expected, LPRA and DUAL
have better overall average performance than ILS after the
recovery of a single node or a link. The simulation results
also indicate that, insofar as overhead traffic is concerned,
the average performance of LPRA is comparable to DUAL
and ILS. LPRA converges faster than DUAL in all cases;
in particular, LPRA is more responsive in the case of node
failures, which is a concern in DUAL’s performance [4].
CPU utilization on ILS is two orders of magnitude larger
than in LPRA and DUAL. On the other hand, LPRA con-
verges in almost the same number of steps as ILS after link
and node failures. Accordingly, LPRA constitutes a more
scalable solution for routing in large internets than ILS and
even DUAL.

6 Conclusions

In this paper, we have presented a routing algorithm
(LPRA) that eliminates the formation of temporary rout-
ing loops without the need for internodal synchronization

spanning multiple hops or the specification of complete
path information. LPRA works on the notion of using in-
formation about the second to last hop of shortest paths
to ensure termination, and an efficient interneighbor coor-
dination mechanism to eliminate temporary loops. A de-
tailed proof of the correctness and loop-freedom of LPRA
is presented and its complexity is analyzed. The worst-case
complexity of LPRA for single recovery/failure is È �®1�� , 1
being the number of nodes affected by this recovery/failure.
LPRA is compared with DUAL and an ideal link state al-
gorithm (ILS) by simulation. The simulation results show
that LPRA converges faster than DUAL for single-resource
changes and the number of messages exchanged is compa-
rable to DUAL.

References

[1] C. Cheng, R. Reley, S. P. R Kumar and J. J. Garcia-
Luna-Aceves, “A Loop-Free Extended Bellman-Ford
Routing Protocol without Bouncing Effect”, ACM
Computer Communications Review, Vol.19, No.4,
1989, pp.224–236.

[2] L.R. Ford and D.R. Fulkerson, Flow in Networks,
Princeton University Press, Princeton, New Jersey,
1962.

[3] J.M. Jaffe and F.M. Moss, “A Responsive Routing
Algorithm for Computer Networks”, IEEE Trans.
Comm., Vol.30, July 1982, pp.1758–1762.

[4] J. J. Garcia-Luna-Aceves, “Loop-free Routing using
Diffusing Computations”, IEEE/ACM Transactions
on Networking, Vol. 1, No. 1, Feb, 1993, pp.130–141.

[5] J. J. Garcia-Luna-Aceves, “Distributed Routing with
Labeled Distances”, IEEE Infocom, Vol.2, May 1992,
pp.633–643.

[6] J. J. Garcia-Luna-Aceves, “LIBRA: A Distributed
Routing Algorithm for Large Internets”, Proceedings
of IEEE Globecom, Vol.3, Dec 1992, pp.1465–1471.

[7] J. Hagouel, “Issues in Routing for Large and Dy-
namic Networks," IBM Research Report RC 9942
(No. 44055) Communications, IBM Thomas J. Wat-
son Research Center, Yorktown Heights, New York,
April 1983.

[8] P.A. Humblet, “Another Adaptive Shortest-Path Al-
gorithm”, IEEE Trans. Comm., Vol.39, No.6, June
1991, pp.995–1003.

[9] P.M. Merlin and A. Segall, “A Failsafe Distributed
Routing Algorithm”, IEEE Trans. Comm., Vol.27,
Sept. 1979, pp.1280–1288.

[10] B. Rajagopalan and M. Faiman, “A Responsive Dis-
tributed Shortest-Path Routing Algorithm within Au-
tonomous Systems,” Internetworking: Research and
Experience, Vol.2, No.1, March 1991, pp. 51-69.

[11] M.S. Sloman and X. Andriopoulos, “A Routing Algo-
rithm for Interconnected LocalAreaNetworks”, Com-
puter Networks and ISDN Systems, 1985, pp.109–130.

[12] Shree Murthy, “Design and Analysis of Distributed
Routing Algorithms”, Master’s Thesis, University of
California, Santa Cruz, June 1994.

[13] W. T. Zaumen, “Simulations in Drama”, Network
Information System Center, SRI International, Menlo
Park, California, January 1991.

